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The electric part of the curvature elasticity 
of a membrane and its relation to flexoelectricity 

by I. BIVAS* and K. HRISTOVA 
Institute of Solid State Physics, Lenin Boulevard 72, 

Liquid Crystal Department, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria 

(Received 17 September 1990; accepted 27 December 1990) 

The contribution to the curvature elastic modulae k, and z, of the spontaneous 
polarization of the dielectric part of the membrane upon bending and that of the 
flexoeffect due to the double layers, adjacent to the membrane is calculated. It is 
shown that there is no simple relation between the flexocoefficient of the membrane 
and the electrostatic contribution to these modulae. 

1. Introduction 
The flexoeffect in membranes has been well investigated [ 1-51. The flexocoefficient f 

is the coefficient of proportionality between the potential difference AU on both sides of 
the deformed membrane and (cl +c,): 

(1) 
f A U = - ( C ,  +c,), 
60 

where .so is the dielectric constant of vacuum. Here (c,+c,) is the doubled mean 
curvature at a certain point of the deformed membrane (cl and c2 are the main 
curvatures at that point) and we suppose this curvature does not vary in different points 
of the membrane. The surface density g, of the elastic free energy is related to the main 
curvatures of a symmetric membrane by [6] 

k ,  gc=-(cl +cc,)2+jtcc1c2. 2 

Several investigations aimed at describing the effect of flexoelectricity on k, and E ,  
[4,7,8] have been carried out. Without talking explicitly of a flexocoefficient 
Winterhalter and Helfrich [7] have found a correlation between the surface charge 
(associated with the flexocoefficient due to the double layers of the membrane) and k, 
and it,. Pelity and Prost [8] have calculated the electric correction to the elastic 
modulae of a membrane with two double layers and a given flexocoefficient. 

The elastic modulae k ,  and E, can be decomposed according to 

k, = Ak:' + k,*, 

L, = A@' + L,*, 
where the electrostatic terms Ak,"' and AL:' are due to the non-zero charge density 
throughout the membrane, whereas k,* and k,* are due to the inter- and intramolecular 
interactions, not having an electrostatic origin (van der Waals forces, exchange 
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884 I. Bivas and K. Hristova 

interactions, etc.). In the present work on the basis of a concrete model of a membrane 
we calculate precisely the electrostatic terms Ak:' and AR'. Our results show that there 
is not an exact relation between the flexocoefficient of the membrane and the 
electrostatic terms of the elastic modulae. 

2. The model 
We suppose that the membrane consists of a dielectric layer with constant dielectric 

permittivity E and thickness d ,  comprising the non-polar chains of the lipid molecules 
and eventually a part of the polar heads, where the electrolyte cannot penetrate, and 
two adjacent double layers, built from the surface charge on the dielectric borders and 
the respective counterion diffuse layers in the electrolyte. We consider the case of high 
charge concentration, when the Debye-Hiickel approximation can be used. In this 
work we deal only with symmetric membranes (with zero spontaneous curvature). 
Since we are interested in the curvature elastic modulae k, and c, we consider only two 
deformations-cylindrical and spherical. In both cases the curvature of the midsurface, 
dividing the dielectric layer into two layers with thickness d/2 are measured. This 
surface does not change its area in the process of deformation. A frame of reference xyz 
with an origin 0 that lies on the midsurface and with a z axis that is perpendicular to the 
midsurface (before and after the deformation) is introduced. Later on, all the quantities 
are considered in this frame of reference at x = 0 and y = 0. Because only flat, cylindrical 
and spherical deformations are considered all the vectorial quantities have directions 
along the z axis. 

In an earlier work [3] it was shown that there are two types of elastic modulae, 
corresponding to the cases of permitted or forbidden charge exchange between the 
electrolyte on both sides of the membrane. First we consider the case of forbidden 
charge exchange. Charge exchange is forbidden if there is no electric link between the 
two electrolyte media and each of the monolayers is neutral. When it is permitted 
AU = 0. If the dielectric layer is an ideal insulator charge exchange is forbidden; this is 
the case we begin with. The results for permitted charge exchange will be presented in 
the discussion. In further considerations the discrete character of the charges will not be 
taken into account. 

We suppose, that the dielectric layer in its undeformed state is characterized by a 
certain initial polarization p(z, c1 = 0, c2 = 0) = p,(z). Since we consider a symmetric 
membrane: 

(3) 

Let n, and n2 be the number of lipid molecules in the first and the second monolayer per 
unit area of the midsurface of the curved bilayer. Let 2n0 be the number of molecules per 
unit area of the flat bilayer. Following Helfrich [6 ] ,  we introduce the flip-flop coefficient 

x = (n2 - n,)/2no. 

Decomposing x in a series with respect to the curvatures c1 and c2 we obtain that 
x = a(cl + c 2 )  + o(cf ,  c;, c1c2). The coefficients in front of the second order curvature are 
equal to zero because of the membrane symmetry; the third and the higher order terms 
do not influence the calculated quantities. The case of blocked flip-flop corresponds to 
a = 0 and the case of free flip-flop to a = ao. a, can be determined either experimentaly or 
theoretically after considering all the inter- and intramolecular interactions, which is 
not the aim of the present work and so it will be assumed to be a given parameter. The 
results for blocked, and free flip-flop will be obtained by the substitution a=O and 
a =ao respectively. 

P O M  = -Po( - 4. 
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Curuature elasticity of a membrane 885 

Upon deformation the polarization p,(z) changes. Its second order approximation 

(4) 

p(z,c,,c,,4= -P(-Z, -C1, -c2,a). (5 )  

with respect to the curvature can be written as 

dZ> '19 c 2 ,  a)= pO(z)+Yl(z, a)(cl + c 2 )  f Y 2 ( z 7  a)(cl + e2)2  + Y3(z, a)clc2* 

Membrane symmetry can be expressed by 

Consequently: 
1 
I a) = Y I (  - z, 

i Y z ( z , 4 =  - Y 2 ( - Z , 4 ,  

Y 3 @ 7  .) = - Y3( - z7 4. 
The over-all electric field in the dielectric layer is given by 

From now on we will consider the projections of these vectors on the z axis of the 
defined frame of reference. Because of the membrane symmetry in the undeformed state 
the electric charge surface densities on both dielectric borders are equal and will be 
denoted by go. 

The flexocoefficient fcan be presented as a sum of two terms, fdiel, which is due to 
the dielectric medium and fdl, which is due to the electric double layers: 

f = f d i e l  + f d P  (8) 
As shown in a previous work [ S ]  (see the Appendix) 

where E,  is the dielectric constant of the electrolyte solution and IC is the reciprocal 
value of the Debye length. Using equations ( 1 )  and (4) we find 

where E is the constant of the dielectric medium. The flexocoefficients are defined when 
(el + c,) is constant [3]. If this is not fulfilled the potential difference AU will depend on 
the average value of (cl +c,) over the whole membrane [3]. The problem is further 
complicated when the gradients of the curvature are essential. This case requires a 
separate treatment, including gradient flexocoefficients. They will not be considered 
here, because they do not affect the values of k, and k,. 

3. Surface density of the electrostatic free energy of a flat membrane 
This energy is a sum of the electrostatic energy of the dielectric layer and of the 

energy of the two double layers. The surface density of the energy of the dielectric 
medium gtel  is given by 
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886 I. Bivas and K.  Hristova 

The free energy of the two double layers per unit membrane surface g;' is 

where U(o) is the potential on the charged dielectric surface with surface charge density 
o if the potential far from the membrane U(co)  = 0. The overall surface density of the 
free electrostatic energy is given by g$ = y p l +  g;'. 

4. Surface density of the electrostatic free energy of a cylindrically deformed membrane 
R is the radius of the midsurface of the cylindrically deformed membrane and 

c = 1/R is its curvature. In this case the polarization of the dielectric medium is 

PCYl(Z, c, 4 = P o H  + Y l k  a)c + Y Z @ ,  4c2 .  ( 1  3) 

The electrostatic energy of the dielectric per unit area of the neutral membrane surface 
g$ is 

For a cylindrical deformation the surface charge densities on the inner (towards the 
axis of the cylinder) and on the outer border of the dielectric medium are given by 

and 1 (15) 

Here the dependence of og, and on the change in the adsorption/desorption rate 
upon deformation is not taken into account [ S ] .  In the present work we examine the 
case when the charge per molecule does not change upon deformation. 

For r<R,  the potential Ug,(r) with respect to the potential of the axis of the 
deformation is 

and for r 2 R, the potential Uz;:(r) with respect to the potential at (Y= co) 

where r is the radial coordinate, measured from the axis of the deformation, 1, and K, 
are ith order modified Bessel functions. The free electrostatic energy of the outer and 
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Curvature elasticity of a membrane 887 

- d / 2  

and 

K K  

the inner double layers per unit area of the dielectric border g$ and gg, are calculated 
by analogy to equations (12) as 

> (21) 

The free energy of the double layers per unit area of the midsurface is given by 

Using equation (9) we have 

If p o  = 0 and y1 =constant we find 

When y1 =constant, equation (10) aquires the form 

(23) 

(24) 
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888 

in this case we can write 

I. Bivas and K. Hristova 

5. Surface density of the electrostatic free energy of a spherically deformed membrane 
R is the radius of the midsurface of the spherically deformed membrane and c = 1/R 

is its curvature. In this the polarization of the dielectric medium is 

The respective electrostatic energy per unit area of the neutral membrane surface gdiel is 

4 2  

-'{ { P&) + c2Cp0(z)z2 + ~ P ~ ( z ) Y , ( z ,  a)z + ~PO(Z)(~Y~(Z,  a) 
(27) 2E - d / 2  

+ Y 3(z, 4) + 4Y:k 43 dz. 

The surface charge densities on the inner (towards the sphere's centre) and on the outer 
border of the dielectric medium are 

and } (28) 

The potential distributions inside and outside the membrane, Ukh and Up;, with 
respect to the potentials of the centre of the deformation and infinity are 

,in 
Ugh(r, a) = sph ~- 

E, cash (KR,) ( K R ,  - 1) 

,out 

eW exp(-lcR2)(1+lcR2) I 

9 

R t  exp ( - K I )  Uout(y 
sph 9 7 

respectively. For the free energy of the double layers &&(c) per unit area of the neutral 
surface we obtain 
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Curvature elasticity of a membrane 889 

where ggh and g$, are the free electrostatic energy for the two monolayers per unit 
layer of dielectric border, 

The overall change of the free energy of the spherically deformed membrane per 
unit midsurface Agzkh is 

Ag$,(C, a) = (2Ak, + Ak,)c2 

3d2 
4a2 +-- 4ctd 4 (34) 

This equation enables us to find the electrostatic correction to the saddle splay 
deformation modulus AEc (having in mind equation (10)) 

AE, = AE:iel + 

where 

and (35) 

If p o  = 0, then Ak:ie' = 0. 

6. Discussion 
In the present work on the basis of a definite model we obtain exact results for the 

electrostatic contributions to the elastic modulae k, and g, in equations (21) and (35). 
The formulae presented correspond to the case of forbidden charge exchange between 
the electrolyte media on both sides of the membrane. Our results for k,d' and z,dl may be 
compared with those of Winterhalter and Helfrich [7]. In their model the sum of the 
surface charges per unit membrane area is not conserved upon spherical deformation. 
In our model this conversion is valid. That is why our results for E:' differ from those of 
Winterhalter and Helfrich [7]. For ct = d/2 our result for Ak:' coincides with theirs [7]. 
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8 90 I. Bivas and K. Hristova 

Expressions for the flexocoefficient are given by equations (9) and (10). Comparison 
of this formulae with equations (21) and (35) show that there is not a simple relation 
between j and k, and zr If we suppose that the polarization of the dielectric is 
homogeneous ( y l  =constant) and the initial polarization p o  = 0, Ak:' can be expressed 
directly by the two terms of the flexocoefficient (the sum of the right hand of equations 
(22) and (25)). Even in this case there is not a simple link between the overall 
flexocoeficient and the elastic modulus of deformation of the membrane. 

Recently it was shown [3] that in the experimental investigations of fluctuating 
vesicles the elastic modulus for free transmembrane charge exchange and free flip-flop 
k,O is measured. It is equal to 

k,O(a)=k,(a)-2f2(~) [ E; (: -+- y1)I-l , 
where k,(a) is the elastic modulus for forbidden transmembrane charge exchange. For 
egg yolk lecithin it is measured to be of the order of 10- l9  J. The expression 

is obtained on the basis of the proposed model electrostatic contribution to the 
elastic deformation modulus for permitted charge exchange between the two 
electrolyte media. For po(z) = 0, y1 =constant and o0 = 0 it is 

We note that this result differs from that of Peity and Prost [S]. 
Now let us make some estimations of the calculated quantities. For dcc30& 

l/rccc 10&ac~d/2andrr~ccO~l C/m2 wefindAk,d'cc10-19 J. ThevalueofAk,d'"'depends 
crucially on the value of fdiel; it is C C ~ O - ' ~  J for fdfj3iel cclO-'gC and O C ~ O - ~ ~ J  for 
fdie,E C .  The term 

2 f  2[ .;(; d +<)I 2/u ' 

which takes in the determination of k: depends in the same way on the overall 
flexocoefficient of the membrane. 

The aim of this work is to calculate precisely the electrostatic parts of the bending 
elasticity of the membrane. Many of the introduced parameters are not measured yet, 
but we need to know all of them to make correct estimations. 

One evident condition for the stability of a tension free membrane is that k: is 
positive. Our calculations show that there are values of the model's parameters for 
which Ak:' (and moreover (Ak:)el) can take negative values. If in spite of this the 
membrane is stable this means that either the membrane exists in some rippled state 
when the higher order curvature elasticity should be taken into account, or the 
contribution of the forces, not having an electrostatic origin is positive and greater in 
magnitude than that of the electrostatic forces. 
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Curvature elasticity of a membrane 891 

Appendix 
Here we derive formula (9) for the flexocoefficient d,, due to the double layers of the 

membrane. Formally we can consider that in the model of the membrane, described 
here, the dielectric part is replaced by vacuum. We investigate the case of forbidden 
charge exchange between the two sides of the membrane. This means that for each 
double layer the surface charge is equal in value and opposite in sign to the sum of the 
charges in the diffusive layer. 

To find the potential difference due to the double layers across the spherically 
deformed membrane we solve the Poisson equation V2U= -pie,  in the Debye- 
Huckel approximation for the inner and the outer electrolyte media: 

v2 u = IC2 u, 
h o e 2  

IC2=- 
eeOkT’ 

where V2 is the laplacian, IC is the reciprocal value of the Debye length, no is the 
concentration of one type of ions in the electrolyte far from the membrane surface, and 
c, is the dielectric constant of the solution. The potential distribution across the 
membrane due to the electric double layers is given by the expression 

a,Rf sh(rcr) a2R, -a,R, th(KR1) 
e,ch(KR1-l) r e,(k-R,+l) e,(rcR1-1) ’ + r t R 1 ,  I 

U(r)  = { &,(::: 1)’ 

02Ri exp [ - Ic(r - R2)] 
r , 

R , < r < R , ,  

where R, = R - d/2  and R, = R + d/2 are the radii of the inner and the outer vacuum 
layer surfaces, R is the radius of curvature of the midplane of the vacuum layer, d is the 
thickness of this layer, r is the current coordinate, a1 and 0, are the surface charge 
densities of its inner and outer surfaces. This expression assures the potential to vanish 
at r = 00 and to have a finite value at  r = 0. The potential jump, created by the deformed 
membrane, is 

AU = U(r  = 00) - U(r  = 0), 

A U = - 2  + CT,KR: 02R2 a1R1 th(KR,) 
E E ~  ch(IcR1)(rcR1 - 1) - e e O ( ~ R 2  + 1) EE,,(KR~ - 1) ‘ 

If we suppose that upon deformation the charge per lipid head does not change (the 
general case is considered in [S]) we have 

(a) = go(  1 + c(d - 2 ~ ) ) ,  

( T ~ ( c I )  = ~ o ( l -  c(d - 2~)). 

Then the first order approximation of the potential difference with respect to the 
curvature is 

2 a o ~ ( d  - 2~ + l / ~ )  
&WK 

A U(R)  = 
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892 Curvature elasticity of a membrane 

According to equation (1) the flexcoefficient f is 
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